

Julia Biernot, MD¹; Eveleen Darby, MA², MS; Wenyaw Chan, PhD⁴; Valory Pavlik, MD, PhD³; Rachelle Doody, MD, PhD² ¹ Illinios Neurological Institute, OSF, University of Illinois College of Medicine at Peoria, Peoria, IL ² Neurology and ³Family and Community Medicine, Baylor College of Medicine, Houston, TX ⁴ University of Texas Health Science Center, Houston TX

Background

- Cholinesterase inhibitors (ChI) and Memantine (Mem) are currently the only FDA approved medications for the treatment of AD.
- Medication persistence is defined as the act of continuing a treatment, or "duration of time from initiation to discontinuation" of therapy¹.
- Persistent treatment with anti-dementia • medications, independently and in combination, is associated with a slower rate of cognitive and functional decline^{2,3} and less likelihood of nursing home placement^{4,5}.
- Discontinuation of ChI has been linked to worsening of cognitive and behavioral symptoms⁶.
- Persistence with ChI has been reported to be between 40 and 54%⁷.
- Adherence to anti-dementia medications has been shown to be positively associated with increasing age, male gender, and higher pill burden⁸.
- Individual patient characteristics that may account for discontinuation versus persistence have not been extensively studied.

Objectives

To describe patient persistence with antidementia medications in an academic Alzheimer's Disease (AD) center and to determine demographic and neuropsychological patient characteristics associated with persistence.

Methods

- 1106 consecutive patients who were followed longitudinally at Baylor College of Medicine Alzheimer's Disease and Memory Disorders Center met NINCDS-ADRDA⁹ criteria for Probable AD. Longitudinal data was collected in a database which was approved by the IRB. Subjects with at least one annual follow-up visit were selected.
- Cumulative anti-dementia medication use was established from a patient's time of initial symptoms¹⁰, onward. Start and end dates of (a) medication(s) initiated prior to the new patient visit (NPV), if applicable, were recorded by a neurologist at the NPV based on information obtained from the patient, family members or pharmacy records, and review of the patient's medical record. Information on subsequent initiations and discontinuations was updated at all follow-up visits.
- If a discontinuation occurred prior or after the NPV, efforts were made to re-start medications at a subsequent clinic visit, whenever possible
- Start and stop dates for all anti-dementia medications were recorded in an electronic database. A total of 1073 patients had complete information regarding anti-dementia medication use. 33 patients were excluded from the analysis because of incomplete data.
- 5 groups of patients were examined: those who never took anti-dementia medications; those who started (a) medication(s) before the NPV and discontinued the medication(s) at least once; those who started (a) medication before or after the NPV and persisted; and those who started after the NPV and discontinued at least one time.
- Because the 5 groups had unbalanced numbers of patients, they were further subdivided into persistent (start and no discontinuation(s)) and impersistent (start and one or more discontinuation(s)) anti-dementia medication users.
- The two groups were compared based on age, sex, years of education, physician's estimate of duration of symptoms, pre-morbid IQ, preprogression rate, and Mini-Mental State Examination (MMSE). Preprogression rate was also calculated as follows: Expected MMSE score (30)-MMSE at symptom onset/ physician's estimate of duration (yrs) of symptoms at baseline. Averages of the scores for the two groups were calculated and a t test (continuous variable) or a Fisher exact test (binary variable) was done to assess for differences between groups.

(at NPV) Sex (M/F

Education

Disease d

Estimate morbid IC

of symptor baseline

Pre-progre (30-mmse)

MMSE

Results

Table 1: 5 groups of patients based on medication usage

AD clinic patient groups	Number		
Total number of patients	1073		
No medications initiated	69		
Start before NPV, perist	425		
Start after NPV, persist	369		
Start before NPV, ≥1 dicontinuation	115		
Start after NPV, ≥ 1 dicontinuation	95		

Table 2: Effect of demographic and neuropsychological factors on persistence

iable	Persistent Medication Use	Total (n)	Mean	SD	95%CI	p
	Yes	794	73.62	8.60	71.76	0.29
	No	210	72.92	8.50	73.02	
=)	Yes	794	259/535 (0.48)			0.41
	No	210	75/135 (0.56)			
on (yrs)	Yes	792	14.10	3.50	13.85	0.23
	No	210	13.78	3.30	13.32	
duration	Yes	794	3.76	2.15	3.61	0.82
	No	210	3.80	2.13	3.51	
ed pre- Q	Yes	648	109.1	10.32	108.3	0.16
	No	161	107.8	9.87	106.2	
ession rate e)/duration oms at	Yes	790	3.15	2.50	2.98	0.06
	No	207	3.57	2.97	3.16	
	Yes	790	20.33	6.43	19.89	0.03
	No	207	19.20	6.80	18.27	

Results

- Of 1004 patients who were treated with anti-dementia medications in an AD clinic, 54% started treatment prior to the NPV, and 46% started treatment after the NPV
- 794 patients (79%) persisted with medications, and 210 (21%) patients were impersistent
- Mini-mental status examination scores at first visit were slightly higher in persistent users $(1.13 \pm 6.51, p=0.03)$
- The groups were otherwise comparable with respect to age, gender, education, estimated pre-morbid IQ, preprogression, and physician's estimate of disease duration.

Conclusion

- Persistence (79%) with anti-dementia drug treatment was higher than previously reported (40-54%)
- Contrary to prior reports, no significant difference in age or gender was found to be associated with persistence
- A trend towards higher MMSE scores in persistent users is consistent with previous findings that persistence with medications is associated with slower decline, but may also indicate that those with higher cognitive scores are more likely to persist with medications
- No other demonstrated demographic or disease characteristics explained differences in persistence
- This suggests that social factors and/or perceived side effects may have accounted for impersistence

References

1. Cramer J, Roy A, Wong P, et al. Medication Compliance and Persistence: Terminology and Definitions. Value In Health (Wiley-Blackwell) [serial online]. January 2008;11(1):44-47

2. Rountree SD, Chan W, Pavlik V, et al. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer's disease. Alzheimers Res Ther 2009; 1:7 3. Atri A, Shaughnessy LW, Locacio JJ, et al. Long-term Course and Effectivness of Combination Therapy in Alzheimer Disease. *Alzheimer Dis Discord*. 2008; 22(3):209-221

4. Lopez OL, Becker IT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2009; 80(6):600-607 5. Rountree SD, Atri A, Lopez OL, et al. Effectiveness of antidementia drugs in delaying Alzheimer disease progression. Alzheimers Dement. 2012 Oct 23. 1-8

6. Doody, R.S., Geldmacher, D.S., Gordon, B. et al. Open-label, Muliticenter, Phase 3 Extension Study of the Safety and Efficacy of Donepezil in Patients with Alzheimer's Disease. Arch Neurol 2001;58:427-433 7. Hermann N, Binder C, Dalziel W, et al. Persistence with Cholinesterase Inhibitor Therapy for Dementia An Observational Administrative Health Database Study. Drugs Aging 2009;26(5):403-407

8. Borah B, Sacco P, Zartosy V, Predictors of adherence among Alzheimer's disease patients receiving oral therapy. Curr Med Res Opin 2010 ;26(8):1957-65. 9. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: Report of the

NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human services Task Force on Alzheimer's Disease. *Neurology* 1984;34:939-944

10. Doody RS, Dunn JK, Huang E, et al. A method for estimating duration of illness in Alzheimer's disease. Dement Geriatr Cogn Disord 2004;17:1-4

