Aashish Anand¹, Haitham Hussein¹, Mustapha Ezzeddine², Joseph Kass¹, Jose Suarez¹ ¹Baylor College of Medicine, Houston, TX; ²University of Minnesota, Minneapolis, MN

Background and Objectives

Baylor

Collegeof

Medicine

Background: Current risk prediction scores for vasospasm after subarachnoid hemorrhage (SAH) use severity of hemorrhage as the only criterion. Intracranial vascular compliance may also influence the risk of vasospasm based on previous observations that older age is associated with lower vasospasm rates.

Objectives: This study aims to evaluate the association of age and vessel calcification, as indirect markers of intracranial vascular compliance, with vasospasm after SAH, and to evaluate whether risk models using these markers improve risk prediction for vasospasm.

Methods

- \succ A retrospective study of 277 patients with aneurysmal SAH from two academic institutions.
- Non-contrast brain CT scan at admission was used to assess the severity of hemorrhage.
- > Calcification in the intracranial internal carotid arteries (ICA) was identified using bone window and a magnification of 300-400%.
- \blacktriangleright An area >1 mm² and average density >130 Hounsfield units were used as a cut-off when identifying calcium.
- Severe vasospasm was identified by cerebral angiography and/or a mean flow velocity ≥200 cm/sec on Transcranial Doppler studies.
- Multivariate logistic regression was used to analyze independent association with vasospasm. Receiver operating characteristic curves were used to evaluate predictability of risk score for severe vasospasm.

Variable

Age <55 ye

Thick SAH

Calcificatio

Model p-value <0.0001; SAH= Subarachnoid Hemorrhage; IVH= Intraventricular Hemorrhage; ICA= Intracranial Internal Carotid Artery

New Risk Score Improves Vasospasm Prediction Following Subarachnoid Hemorrhage Using Markers of Vascular Compliance

Results

Table 1. Independent Predictors for Vasospasm after SAH

	Odd's ratio	95% CI
ears	3.1	1.5-6.5
I±IVH	3.0	1.6-5.9
on in ICA	0.5	0.2-0.9

Table 2. ABC Scores for Prediction of Vasospasm after SAH

	<55 years or	2 points or
	<65 years	1 point
severity	Thick SAH±IVH	2 points
cation	Absent calcium	2 points
laximum points		6 points

Table 3. Prediction o after SAH us

Variable	AUC (95% CI)	P-value
ABC score ≥ 4	0.72 (0.65-0.78)	< 0.0001
Modified Fisher grade ≥3 or Thick SAH±IVH	0.60 (0.52-0.68)	0.02
Age ≤55 years	0.64 (0.56-0.71)	0.001
Absence of calcification in intracranial ICA	0.63 (0.55-0.71)	0.002

ROC= Receiver Operating Characteristic; AUC= Area Under the *Curve;* SAH= Subarachnoid Hemorrhage; IVH= Intraventricular Hemorrhage; ICA= Intracranial Internal Carotid Artery

Conclusions

- > A new risk-score, that combines indirect markers of hemorrhage, improves prediction of severe vasospasm after SAH.
- Calcium scores of intracranial vasculature may be evaluated as a more quantitative marker of both intracranial vascular compliance and vasospasm.

Download Available

Medical School Driven to Discover™

f Severe Vasospasm				
sing ROC Curves				
	D 1			

intracranial vascular compliance with the severity of