Differences in the Association of Peripheral Insulin with Cognitive Function in non-Diabetic AD Cases and Normal Controls Valory Pavlik¹, Paul Massman², Robert Barber³, Christie Ballantyne¹, Rachelle Doody¹ ¹Baylor College of Medicine, ²University of Houston, ³University of North Texas Health Science Center

Background

- Chronic hyperinsulinemia, a feature of T2DM and metabolic syndrome, increases the risk of cognitive impairment and AD.
- Increased insulin levels in the brain may improve AD symptoms.
- The role of peripheral insulin as a biomarker of increased AD risk and cognitive changes in AD needs further elucidation.

Objective

To determine association between serum insulin and cognitive performance in AD cases and controls without type 2DM enrolled in the Texas Alzheimer's Research and Care Consortium (TARCC).

Methods

- Participants: 197 AD cases (25 with T2DM) and 198 normal controls (25 with T2DM) enrolled at 4 centers in Texas. After calculating descriptive statistics, we excluded the 50 T2DM cases from the analysis of insulinemia and cognitive function.
- Measurements: History of CVD and CVD risk factors, multiplexed serum (non-fasting) protein immunoassay, including insulin, lipid profile and HbA1c measurements performed by standard assays, APOE genotype.
- Cognitive Domain/Tests: MMSE, WMS Digit Span, Trails A and B, WMS Logical Memory I and II, Boston Naming and COWAT (FAS), WMS Visual Reproduction I and II, AMNART errors. Tests scored using MOANS norms.

Analysis:

- Linear regression was used to assess association of log transformed serum insulin and the performance in individual cognitive domains.
- Each model was adjusted for age, sex, years of education, and BMI.
- Cases and Controls were analyzed separately after interaction tests showed differences in association of insulin and cognitive outcomes on some tests. Participants with T2DM were excluded.
- Additional covariates were tested for impact on observed significant associations: history of CVD/CVD Equivalent (see definition in Table footnote), APOE genotype, HbA1c.

Results

- Higher insulin was associated with worse performance on AMNART, COWAT, Digit Span, LMI and LMII, and VRII in controls.
- Higher insulin was associated with worse performance on Trail B (only 97/172 cases tested) and COWAT in cases.
- MMSE, Boston Naming and Trails A were not affected by insulin levels in cases or controls.
- Adjustment for other covariates, or limiting the analysis to mild AD cases did not alter the findings.

Table 1. Characteristics of Cases and Controls			
	AD Cases	Normal Controls	
	Mean (±SD) or Percent	Mean (±SD) or Percent	р
Covariates			
Age at Visit	77.41 (8.29)	70.42 (8.89)	<.001
Sex (% female)	34.52	32.82	.569
Education (yrs)	13.98	15.53	<.001
Hispanic (%)*	3.55	5.56	.340
ApoE 4 Genotype			
0 alleles	39.23	73.85	<.001
1 allele	45.86	23.59	
2 alleles	14.92	2.56	
Cardiovascular Risk Factors			
BMI (kilos/meters ²)	25.70 (4.95)	27.48 (4.82)	<.001
Diabetes (%)	11.22	11.28	.681
CVD Equivalent**	48.22	46.46	.726
Total Cholesterol	210.12 (50.12)	209.36 (62.04)	.894
LDL Cholesterol	107.36 (40.17)	94.80 (39.28)	.002
HbA1c	5.74 (.65)	5.86 (.88)	.133
Serum Insulin (uIU/mL)	10.26 (13.87)	10.43 (17.84)	.913
Cognitive Scores			
MMSE	19.18 (6.22)	29.42 (.88)	<.001
AMNART Errors	8.77 (3.64)	12.11 (3.37)	<.001
COWAT	7.11 (3.13)	11.64 (2.74)	<.001
Boston Naming	6.33 (3.83)	11.92 (3.03)	
Digit Span	8.23 (2.97)	11.69 (2.78)	<.001
Trail A	6.08 (3.06)	10.34 (2.69)	<.001
Trail B	4.94 (3.31)	10.97 (2.54)	<.001
LMI	4.0 (2.42)	13.57 (2.75)	<.001
LM II	3.57 (1.84)	13.99 (2.63)	<.001
VR I	4.52 (2.74)	12.37 (3.20)	<.001
VR II	4.71 (2.14)	13.56 (3.13)	<.001
*<2 % of any other race in sample			

**Calculated according to ATP III guidelines (history of MI, CHF, Diabetes, or any two of HTN, hyperlipidemia, or current smoking)

Conclusion

- The relationship between peripheral insulin and cognitive performance differs in AD cases compared to controls.
- Interventions to improve insulin sensitivity in AD cases may have different cognitive outcomes than in persons who have not developed AD.

Printed by