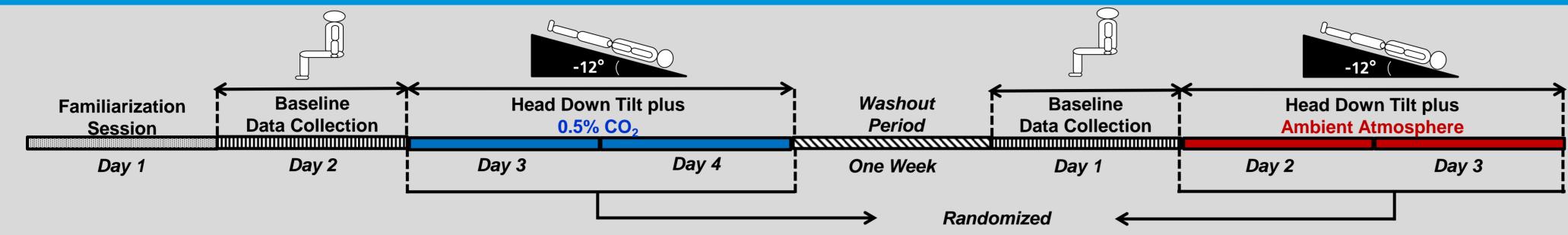

Effects of Head Down Tilt With or Without 0.5% CO₂ on Intracranial and Intraocular Pressure: Results from the Space-Cot Study

K. Marshall-Bowman^{1, 2}, J. Rittweger^{1, 2}, J. I. Suarez³, C. V. Rao³, U. Limper¹, E. Mulder¹, D. Donoviel³, E. Bershad³

¹Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany ²University of Cologne Faculty of Medicine, Cologne, Germany ³Baylor College of Medicine, Houston, TX, USA


Introduction

Currently, >50% of astronauts present with structural and functional ophthalmic changes after 6 month missions on the ISS, referred to as the **Visual Impairment and Intracranial Pressure (VIIP) syndrome** [1]. Although the exact causative mechanisms of VIIP are unknown, it is hypothesized that headward fluid shifts and elevated atmospheric carbon dioxide (CO_2) levels may contribute by leading to an elevated intracranial volume, which in turn would increase intracranial pressure (ICP) once compensatory volume accommodation is exhausted. It has also been hypothesized that a mismatch in the ICP and intraocular pressure (IOP) may contribute to VIIP [2]. This was studied in a ground-based spaceflight analog in the **SpaceCot Study: S**tudying the **P**hysiological and **A**natomical **C**erebral **E**ffects of **CO**₂ and **T**ilt.

Source: Mark Erickson / jhrehdesign.com Source: Berdahl et al., 2012

Space-Cot Study Design

- Six healthy, male subjects (mean age: 41 ± 4 yrs; mean height, 177 ± 3.4 cm, BMI: $26.2 \pm 2 \text{ kg/m}^2$)
- Double-blinded, cross-over design with 2 campaigns: 28 h bed rest at -12° HDT with ambient atmosphere and with 0.5% CO₂ atmosphere (*Fig. 1*)
- Short exposure to 3% CO₂ performed during the last 2 h of HDT
- Performed at the :envihab at DLR in Cologne, Germany

Objective

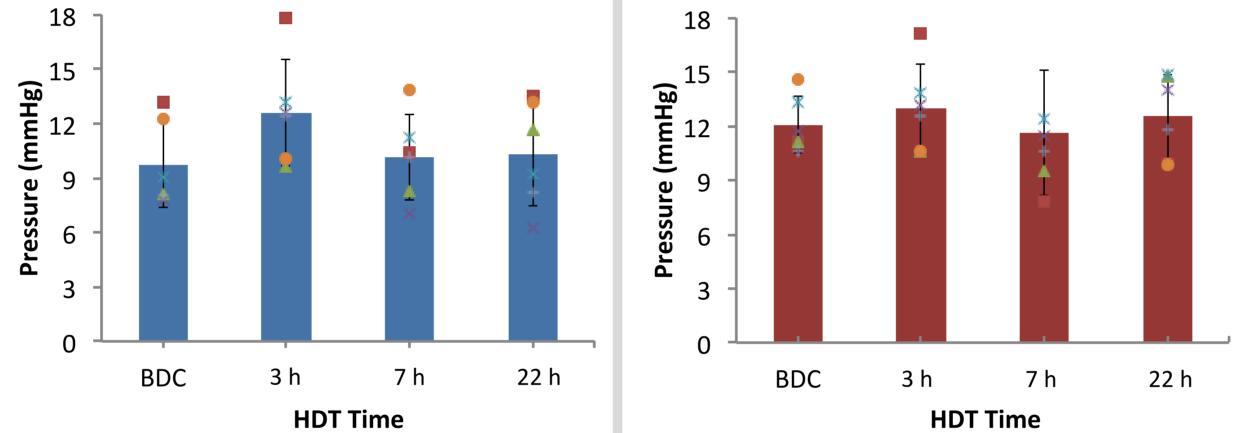

 To determine the effects of headward fluid shifts with and without the added effects of increased ambient CO₂ on cerebral and ocular physiology to better understand the stieleav of the VIIP Syndrome

Fig. 1: Space-Cot Study Schematic

Results

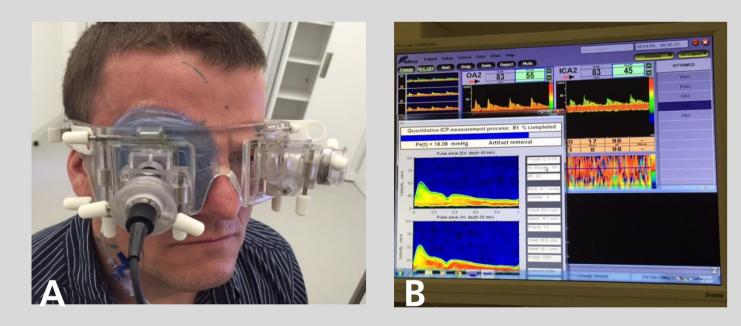
Intracranial Pressure

- ICP did not change significantly with HDT (p=0.3) in either atmosphere (*Fig. 4 and Fig. 5*)
- Atmosphere (ambient vs. 0.5% CO₂) did not have a significant effect on ICP

Summary & Conclusions

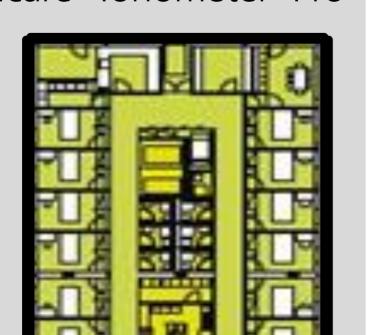
HDT does not significantly alter ICP

Short-term exposure to -12° HDT does not significantly increase ICP as hypothesized, presumably due to adequate volume compensatory mechanisms in healthy subjects.


> HDT increases IOP

IOP increased during -12° HDT in both investigated atmospheric conditions.

etiology of the VIIP Syndrome


Materials & Methods

• Non-invasive Intracranial Pressure: twodepth Doppler ultrasound examining flow through two segments of the ophthalmic artery (Vittamed, *Fig. 2*)

Fig. 2: Vittamed device (A) and signals from the extracranial and intracranial segments of the OA (B)

- Intraocular Pressure: Icare Tonometer Pro (rebound)
- **CO₂ Administration:** Atmospheric CO₂ was increased in the entire bed rest facility in the :envihab (*Fig. 3*)

Fig. 4: ICP during -12° HDT plus 0.5% CO₂ atmosphere

Fig. 5: ICP during -12° HDT plus ambient atmosphere

Intraocular Pressure

- IOP increased at 1.5 h HDT in both atmospheric conditions and remained elevated until 22.5 h (p<0.01, Fig. 6)
- Short exposure to 3% CO₂ at 27 h HDT resulted in a decrease in IOP, back to baseline values in ambient condition (*Fig. 6*)
- Significant effect of **eye lateralization** in CO_2 condition (p<0.01, *Fig. 7*), however not with ambient air (p=0.7, *Fig. 8*)

17

16

bressure (mmHg) 14 13 12

11

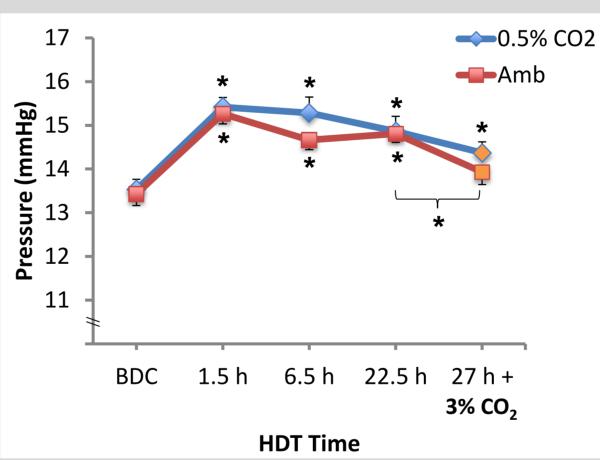
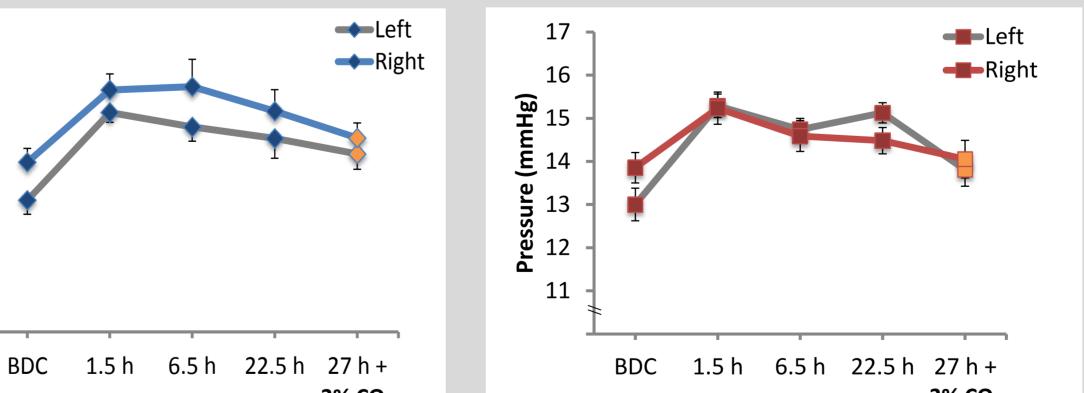



Fig. 6: IOP during -12° HDT

0.5% CO₂ does not have significant effects on ICP and IOP during HDT

In short duration exposure, 0.5% CO_2 does not have additive effects on ICP and IOP in combination with -12° HDT.

However, prior exposure to 0.5% CO₂ did prevent effects of 3% CO₂ on IOP

Innovative Aspects

- First bed rest study to investigate HDT with increased ambient CO₂ as a new groundbased analog for spaceflight
- Implemented steeper degree of HDT (-12° HDT) to investigate the effects of a larger headward fluid shift
- Significant insights into brain physiology through use of multiple techniques

Space-Cot Team

Fig. 3: :envihab bed rest facility	HDT Time ^{3% CO} ₂ Fig. 7: IOP by eye during -12° HDT plus 0.5% CO ₂ atmosphere	HDT Time ^{3% CO} ₂ Fig. 8: IOP by eye during -12° HDT plus ambient atmosphere	
Data Analysis	References		
LME and ANOVABonferroni post-hoc contrast testing	 Mader, T.H. <i>et al.</i> (2011). <i>Ophthalmology</i> 118: 2058-2069. Zhang, LF., Hargens, A.R. (2014). <i>Aviat. Space Environ. Med.</i> 85: 78-80. Berdahl, J.P., Yu, D.Y., Morgan, W.H. (2012). <i>Med. Hypotheses</i> 79: 719-724. 		*Not all pictured

Contact

E-mail: Karina.Marshall-Bowman@DLR.de Phone: +49 2203 601 4186

Knowledge for Tomorrow

Acknowledgements

