Neuropsychological Correlates of Early Impaired Self-Awareness Following TBI

Stephen R. McCauley, PhD Baylor College of Medicine Houston, USA

Baylor College of Medicine

Acknowledgements

Mark Sherer, PhD

(TIRR/Memorial Hermann and BCM, Houston, TX)

Tessa Hart, PhD

(Moss Rehabilitation Research Institute, Philadelphia, PA)

Marie-Claude Roberge, PhD

(TIRR/Memorial Hermann, Houston, TX)

TBI Model Systems Project

Funding: NIDRR (H133A980067, H133A980035, H133A97033)

Impaired Self-Awareness

- Anosognosia is a condition in which a person who suffers disability due to brain injury is unaware of the extent or existence of their disability
- Associated with:
 - Poor compliance in rehab
 - Poor long-term outcome
 - More pronounced for cognitive and behavioral impairments
- Few studies of early ISA
- Patients overestimate abilities 1st 6 months postinjury
- Improvement in ISA from 1 to 3 years postinjury

Impaired Self-Awareness

- Previous studies report inconsistent results
- Better awareness & better cognitive performance
 - Anderson & Tranel (1989), Boake (1995), O'Keefe et al (2007)
- No strong relation
 - McKinlay & Brooks (1984), Prigatano & Altman (1990), Newman et al. (2000).
- Mixed findings correlating EF and ISA
 - O'Keefe (2004): recognizing and processing errors
 - Hart et al. (2005): WM, verbal fluency
 - Bivona et al. (2008): problem solving, mental flexibility, response inhibition
 - No relation: (Bach & David 2006)

Hypotheses

- Degree of early ISA will be correlated with the degree of episodic memory dysfunction (↓awareness related to ↓memory)
- Degree of early ISA will be correlated with the degree of executive dysfunction (↓awareness related to ↓EF)
- 3) Early ISA will be correlated more robustly with measures of memory and EF than other domains (e.g., language, visual attention)
- Memory—maintain and update perception of abilities from recent experiences
- EF—integrating and synthesizing information across time and shifting between objective to subjective views of self

Methods

Participants

- Participants recruited from Philadelphia and Jackson, MS
- Documented moderate to severe TBI (included c-milds)
- Admission to Level-I trauma care < 24 hours postinjury</p>
- Inpatient rehab admission < 72 hours post acute D/C</p>
- Age 16 +
- Emergence from PTA prior to rehab D/C
- Fluent in English
- No pre-injury neurological D/O
- Non-aphasic

Methods

Demographics obtained through interview

- GCS, DOI, DOT, PTA duration, and TFC obtained through medical record review
- Informed consent compliant with Declaration of Helsinki

Methods

- Neuropsych assessments performed after PTA resolution
- Assessment of ISA contemporaneous with neuropsych by patient and clinician independently
- ISA assessment completed by treating neuropsychologist

Awareness Questionnaire (Sherer, et al., 1998)

- 17-item interview rating Cognitive (7), Behavioral/ Affective (6), and Motor/Sensory (4) domains
- Compares preinjury to current functioning
 - "How is your ability to _____ as compared with before your injury?"
 - 1—much worse to 5—much better
- Parallel version given to clinicians and/or family members
- The degree of ISA is the discrepancy score: Patient Clinician ratings
- Higher discrepancy scores indicate poorer selfawareness

Episodic Memory

- Logical Memory (WMS-R)
- Rey Auditory Verbal Learning Test (RAVLT)

Executive Function

- Wisconsin Card Sorting Test (WCST)
- Modified Six Elements Test (M-SET)
- Dual Task Procedure

Visual Attention

Trail Making Test (TMT A & B)

<u>Language</u>

Controlled Oral Word Association Test (COWAT)

Functional Status

■ FIM[™] at rehabilitation admission

<u>M-SET</u>

- Behavioural Assessment of the Dysexecutive Syndrome (BADS)
- 3 tasks: dictation, arithmetic, picture naming
- Each task divided into 2 parts (A & B)
- Attempt some of each of the 6 tasks in 10 minutes
- Cannot perform similar subtests consecutively

Scores

- Tasks attempted/completed
- Broken rules
- Overall performance profile
- Max time spent on single task

Dual Task Procedure (Della Sala, Baddeley, Papagno, and Spinnler, 1995)

- Repeating digit strings at participant's maximum span
- Crossing out boxes connected by paths of lines
- Both tasks performed simultaneously for 2 min.
- Scores (under the dual task condition)
 - Tracking
 - Forward Digit Span

Demographic and Injury Variables (n=165)

Categorical Variables	Missing	(%)	n	(%)	
Gender	0	(0)			
Male			127	(77.0)	
Female			38	(23.0)	
GCS	6	(3.6)			
3 - 8			97	(58.8)	
9 - 12			28	(17.0)	
13 - 15			34	(20.6)	
Continuous Variables	Missing	(%)	Me (25 th , 7	dian 5 th %iles)	
Age (years)	0	(0)	32 (22, 44)		
Education (years)	0	(0)	12 (11, 14)		
Duration of PTA (days)	43	(26.1)	29 (13 <i>,</i> 45)		
TFC (days)	5	(3)	4 (1, 14)		
Chronicity (DOI-DOT, days)	0	(0)	36 (23, 57)		
FIM [™] at Rehab Admission	9	(5.5)	52 (3	52 (38, 71)	

Neuropsychological Measures

Measure	Missing	(%)
WMS-R Logical Memory	1	(0.6)
RAVLT	7	(4.2)
WCST	16	(9.7)
M-SET	17	(10.3)
Dual Task	16	(9.7)
TMT (A & B)	13	(7.9)
COWAT	0	(0)

Missing Data

- Imputation as previously reported (Sherer, et al., 2003)
- Neuropsych data imputed using individual predictive models using other predictor variables (e.g., age, gender, GCS, TFC, etc.)
- 2 AQ clinician ratings missing 1 item
- 1 AQ patient rating missing 1 item
 - Imputed with median of completed items from relevant subscale

Results

- 133 TBIMS participants were recruited
 - 11 did not meet inclusion criteria for this study
- 58 non-TBIMS participants who also met study criteria were included
 - 15 declined to participate
- TBIMS and non-TBIMS groups differed only for chronicity (p < .002, mean diff. 19.7 days)</p>
- Chronicity correlated with the AQ P-C discrepancy score (p < .04) and was included as a covariate in analyses

Results

Principal Components Analysis

- Orthomax rotation for orthogonal structure (same solution when using oblique rotation)
- Item loadings \geq .41 were considered significant based on sample size for α =.01 (*Stevens, 2002*)
- 4 factors emerged with Eigenvalues > 1

Total variance = 68.1%	l Memory	ll Strategic Multitasking	III Alternating Attention	IV Concept Formation
WMS-R LM Del. Recall	.89			
WMS-R LM Imm. Recall	.87			
RAVLT Trials 1-5 (sum)	.82			
RAVLT Del. Recall	.75			
M-SET # Tasks Completed		.90		
M-SET Profile		.89		
M-SET # Broken Rules		58		
ТМТ В			.77	
ΤΜΤ Α			.77	
Dual Task–Tracking			48	
Dual Task–Digit Span			75	
WCST Persev. Responses				.94
WCST # Categories				83

COWAT did not load significantly on any factor

AQ and Factor Correlations

	Awareness Questionnaire (P-C discrep.)			
Factors	Total Score	Cognitive	Behavioral/ Affective	Motor/ Sensory
I – Memory	35	35	33	15
	< .0001	< .0001	< .0001	ns
II – Strategic Multitasking	30	31	25	23
	< .0001	< .0001	.001	.003
III – Alternating Attention	.08	.07	.07	01
	ns	ns	ns	<i>ns</i>
IV – Concept Formation	.13	.16	.08	.09
	ns	ns	ns	ns

Spearman p correlations Bonferroni correction p < .0042

Predicting Early ISA

- Explored whether neuropsych variables could predict early ISA (AQ P-C discrepancy score)
- Linear regression model
 - Demographics (age, gender, education)
 - Injury-related variables (GCS, TFC, chronicity)
 - Functional status (rehab admission FIM[™])
 - Neuropsychological PCA factor scores

Predicting Early ISA

Variable	df	β	SE β	t	p	Stnd β
Age*	2	10	.07	-1.48	.14	13
Gender	1	2.28	2.5	1.01	.32	.08
Education*	2	.16	.55	.29	.77	.02
Chronicity*	2	.02	.05	.45	.65	.04
GCS	1	25	.28	88	.38	08
TFC	1	01	.09	15	.88	02
FIM™ (Rehab Admit)*	2	07	.07	-1.0	.32	09
Factor I (Memory)	1	14	.05	-2.85	< .005	24
Factor II (Multitasking)	1	86	.41	-2.09	< .04	18
Factor III (Alt. Attn.)	1	002	.01	23	.82	02
Factor IV (Concept Form.)	1	.03	.03	1.01	.31	.08

*Restricted cubic spline with 3 knots used Higher factor scores predict less impaired self-awareness

Predicting Early ISA

- 20.7% variability account (*adj. R*² = .15)
- 2 factors were sig. after accounting for other demographic and injury predictors
- Injury severity indices and age were not sig. predictors
 - Neuropsych test performance sensitive to these effects

Discussion

- Hypothesis 1—supported
- Early ISA was correlated with episodic memory dysfunction (↓awareness related to ↓memory)
- Difficulty recalling previous failures and feedback about deficits contribute to early ISA
- Interventions to improve memory and selfmonitoring may improve awareness

Discussion

- Hypothesis 2—partially supported
- Early ISA was correlated with executive dysfunction (\downarrow awareness related to \downarrow EF)
- Early ISA was correlated more robustly with <u>some</u> measures of EF
- ISA not sig. related to WCST results
- M-SET is a more complex task of EF and therefore may correlate more robustly with ISA

Discussion

- Hypothesis 3—supported
- Early ISA will be correlated more robustly with measures of memory and EF than other domains
- COWAT and TMT B also considered tests of EF
- Clearly more related to episodic memory and some facets of EF
- Results may be due in part to specific EF measures included (e.g., common-method variance)

Conclusion

- Episodic memory and EF important contributors to early ISA
- Support the concept of self-monitoring and updating schema of patient's abilities to facilitate accurate self-awareness