Relationship of Pre-morbid IQ and Education to Progression of Alzheimer's Disease

Valory N. Pavlik, Ph.D.¹, Rachelle Doody, M.D., Ph.D.¹, Paul Massman, Ph.D.², Wenyaw Chan, Ph.D.³, Stephanie Yeh, M.S.¹ ¹Baylor College of Medicine, ²University of Houston, ³The University of Texas Health Sciences Center—Houston School of Public Health

Background

- Education is a strong predictor of AD incidence
- Education and tests of cognitive performance are highly correlated
- Studies of the role of education on rate of cognitive decline after a diagnosis of AD have not yielded consistent results
- Since education and pre-morbid intellectual functioning are highly correlated, a direct measure of pre-morbid IQ may be better than education as a predictor of cognitive decline in AD

Hypothesis

• Pre-morbid IQ is a better predictor of cognitive decline, global progression, and overall survival than education in patients with probable AD

Methods

• Setting and Study Population

- -Baylor Alzheimer's Disease Center, Houston -Electronic database of initial and follow-up clinical and neuropsychological assessments maintained for more than 1600 patients diagnosed according to NINCDS-NDRDA criteria
- –Database established in 1989, new patients accrued continuously since that time
- -Vital status of all patients ascertained through phone follow-up of contacts and/or death index searches

• Inclusion criteria

- –Diagnosis of probable AD
- -An AMNART test administered within six months of the baseline visit
- -At least one annual follow-up visit with neuropsychological assessment

Study Variables

- Outcome Variables –Baseline and follow-up MMSE scores –Baseline and follow-up ADAS-Cog scores –Baseline and follow-up Clinical Dementia Rating (CDR) scores

 - –Vital status

Statistical Analysis

- -Analysis was restricted to the first six testing sessions, since the small number of individuals with more than six assessments could distort regression model fit
- -Linear random effects models used to test hypotheses regarding education, pre-morbid cognitive ability and
- decline on MMSE and ADAS-Cog scores

- -Cox proportional hazards regression with robust variance estimation used to identify predictors of all-cause mortality -Quadratic term for time included to account for nonlinear change
- -Time by baseline AMNART and time by education interaction terms tested as warranted
- -Graphs of fitted regression lines produced using STATA

• Predictor Variables

- -Age at baseline visit to center
- -Sex
- -Race/ethnicity
- -Years of education
- -Estimated duration
- of symptoms before baseline visit
- -Nelson Adult Reading Test (American version) raw score

Results

- population shown in Table 1.
- (see Table 2 and graphs of fitted regression lines).
- models.
- of all cause mortality (Table 3).

• 478 patients met inclusion criteria. Baseline characteristics of the study

• When the raw AMNART score was not in the model, education was a significant predictor of cognitive performance, but was not associated with differential rate of decline (education by time interaction term not significant). • The raw baseline AMNART was significantly associated with performance on the MMSE, ADAS-Cog and CDR Sum of Boxes scores, and the rate of decline was more rapid in persons with a below average AMNART score

• Education was not a significant predictor of test performance or global function when the raw baseline AMNART was included in the regression

• Neither education nor the baseline AMNART score were significant predictors

Change in ADAS–Cog Score by Level of Baseline AMNART

Table 1 Baseline Characteristics of Study Population

(All with Diagnosis of Probable Al	D)	of annual	
Variable	n with value	Mean ± SD or Percent	Range
Age at Diagnosis	478	74.5 ± 8.0	46-93
Sex (% female)	478	67.4%	n/a
Race/Ethnic Group :	478		n/a
-White		433 (90.6%)	
–Black		27 (5.6%)	
–Hispanic		13 (2.7%)	
–Other		5 (1.15%)	
Years of Education	478	13.9 ± 3.4	0-29
Baseline MMSE	468	21.8 ± 5.1	2-30
Baseline MMSE Classification	468		n/a
Mild (>=20 points)		324 (69.2%)	
Moderate (10-19 points)		129 (27.6%)	
Severe (<10 points)		15 (3.2%)	
CDR Sum of Boxes	460	5.2 (3.5)	0-15
First AMNART (estimated IQ)	478	108.2 ± 10.3	76-155
Raw Baseline AMNART (AMNART errors)		21.5 ± 10.3	1-45
Baseline ADAS Cog	381	22.1 ± 11.4	1-64
Estimated duration of disease before diagnosis	474	3.5 ± 2.20	0.5 –13.0
Years of active follow-up	478	3.2 ± 2.00	0.7 – 11.9
Proportion deceased as of censoring date	478	161 (34%)	n/a
Years of survival from diagnosis to death	478	5.0 ± 2.4	1.0 – 12.7

Conclusions

- diagnosed with probable AD

Implications

- outcomes

 Table 2. Random Effects Models Predicting Change in Each Outcome Measure

	MMSE Score		ADAS-Cog Score			CDR Sum of Boxes Score			
	Beta	SE	р	Beta	SE	р	Beta	SE	р
Model 1 (demographics, dura- tion of symptoms, years from									
Age at diagnosis	- 01	03	74	04	08	65	0.05	02	02
Sex (1=male: 0=female)	1.03	58	08	-0.55	1 32	68	-0.28	39	47
Race/Ethnicity (1=non-His- panic white; 0=other)	1.96	.92	.03	-5.60	2.10	<.01	-1.50	.62	.02
Education (yrs)	0.35	.08	<.01	-0.45	.19	.02	-0.17	.06	<.01
Duration of Symptoms Before Diagnosis (yrs)	-0.43	.12	<.01	1.01	.28	<.01	0.23	.08	<.01
Time (yrs)	-2.76	.19	<.01	4.32	.43	<.01	2.19	.14	<.01
Time Squared (quadratic term)	0.14	.04	<.01	-0.12	.10	.21	-0.14	.03	<.01
Education x Time Interaction	0.04	.03	.16	-0.08	.06	.16	-0.03	.02	.11
Intercept	17.07			27.7			4.11		
Total Variance Explained	.184			.109			.206		
Model (Model 2 plus Raw Baseline AMNART, time x AMNART interaction)									
Age at diagnosis	-0.01	.03	.83	0.03	.07	.63	0.05	.02	.02
Gender	1.23	.54	.02	-1.16	1.26	.36	-0.37	.38	.33
Race/Ethnicity (1=non-His- panic white; 0=otherwise)	0.37	.87	.67	-2.51	2.03	.22	-0.77	.61	.21
Education (yrs)	0.13	.08	.10	-0.01	.19	.96	-0.08	.06	.16
Duration of Symptoms Before Diagnosis (yrs)	-0.33	.11	<.01	0.81	.26	<.01	0.19	.08	.02
Baseline AMNART (raw score)	-0.21	.03	<.01	0.41	.06	<.01	0.09	.02	<.01
Time (yrs)	-2.16	.25	<.01	3.34	.60	<.01	1.92	.19	<.01
Time Squared (quadratic term)	0.13	.04	<.01	-0.10	.10	.30	-0.13	.03	<.01
Baseline AMNART x Time Interaction	03	.01	<.01	0.046	.02	.02	0.01	.01	.04
Intercept	25.2			10.74			.645		
Total Variance Explained	.280			.189			.25		

	Univariate Hazard Ratio (95% CI)	р	Multivariate Adjusted Hazard Ratio (95% CI)*	
	1.01 (0.99, 1.03)	.26	1.02 (1.00, 1.05)	.04
	1.72 (1.25, 2.38)	<.01	1.75 (1.24, 2.44)	<.01
vise)	1.53 (0.84, 2.78)	.16	1.60 (0.83, 3.11)	.16
	1.02 (0.97, 1.07)	.39	1.02 (0.97, 1.08)	.36
	.95 (0.89, 1.03)	.27	.94 (0.87,1.02)	.16
lerate or severe, 0=mild)	1.46 (1.06, 2.01)	.02	1.62 (1.14, 2.32)	<.01
increments)	1.01 (0.99,1.02)	.22	1.01 (0.99, 1.03)	.30

• A measure of pre-morbid IQ is preferable as a predictor of cognitive performance and rate of cognitive decline than education in persons

• Neither pre-morbid IQ nor education is associated with overall survival after a diagnosis of probable AD

• Baseline differences in cognitive performance and global function associated with pre-morbid IQ are preserved over long-term follow-up

• The difference in the slope of decline associated with higher pre-morbid IQ is relatively small, and the practical impact on outcomes such as nursing home placement and/or caregiver burden needs further study

• A measure of pre-morbid IQ is preferable to education as a predictor of AD