

Health Science Center at Houston

Clinical Correlates of Eye Movements in Huntington Disease

Cameron B. Jetera, Ashley J. Hoodab, Alicia M. Palao, Saumil S. Patela, Joseph Jankovic, Anne B. Sereno

^aDepartment of Neurobiology and Anatomy, ^bDepartment of Neurology, The University of Texas Medical School at Houston, Texas ^cDepartment of Neurology, Baylor College of Medicine, Houston, Texas

A. Background

Huntington disease (HD) is a genetic, neurodegenerative movement disorder characterized by chorea, behavioral co-morbidities, cognitive deficits, and eye movement abnormalities. The basal ganglia is adversely affected in HD and this, in turn, results in deficits in cognitive and eye movement functions (Peltsch et al., 2008). Therefore, we sought to evaluate whether eye movement tasks prove useful in characterizing disease severity in HD.

B. Clinical Assessment

Subjects

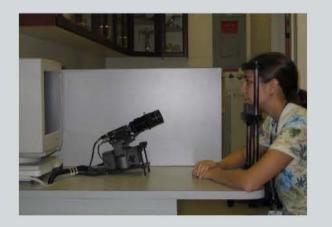
9 HD patients

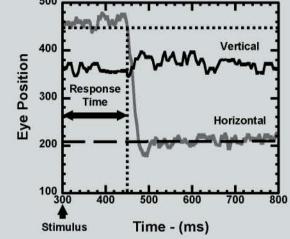
- 4 Off-Medication
 - 5 On-Medication (Tetrabenazine)

Diagnostic Tests

Montreal Cognitive Assessment Test (MoCA)
Unified HD Rating Scale (UHDRS) - Motor Subscale
Repetitions of C-A-G neucleotides

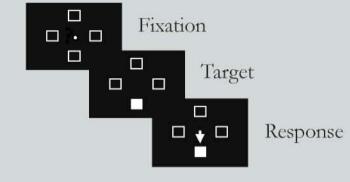
Table 1 - HD Population


	All HD N=9		OFF N=4		ON N=5	
	mean (sd)	range	mean (sd)	range	mean (sd)	range
Age (years)	46.7 (15.7)	27-70	40.3 (20.0)	27-70	51.8 (10.9)	43-70
MoCA	26.2 (2.2)	22-30	27.8 (1.7)	26-30	25.0 (1.9)	22-27
UHDRS Motor	26.1 (20.8)	0-47	14.0 (22.1)	0-47	35.8 (15.4)	9-47
CAG Repeats	44.0 (3.7)	41-52	45.5 (5.1)	41-52	42.8 (2.1)	41-45


Table 2 - UHDRS Motor Components

		All HD N=9	
		mean (sd)	range
Total		26.1 (20.8)	0-47
Ocular Pursuit	vertical	0.33 (.50)	0-1
	horizontal	0.44 (.53)	0-1
Saccade Initiation	vertical	1.0 (.87)	0-2
	horizontal	1.0 (.87)	0-2
Saccade Velocity	vertical	.78 (.44)	0-1
	horizontal	.78 (.44)	0-1
Bradykinesia		.89 (.93)	0-2
Chorea (whole body sum)		10.8 (8.9)	0-21

C. Eye Tracking


Using an infrared eye tracker, we measured HD patient response times (RTs) and directional error rates (ERs) of horizontal and vertical saccades using prosaccade and antisaccade eye movement tasks.

Tasks

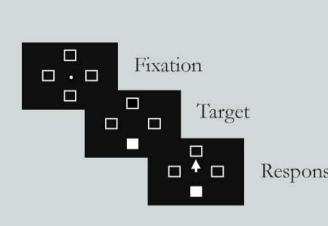
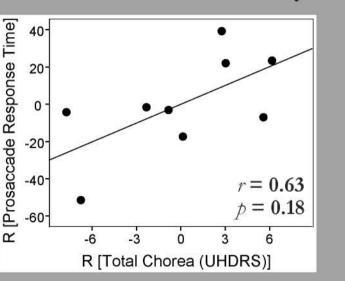
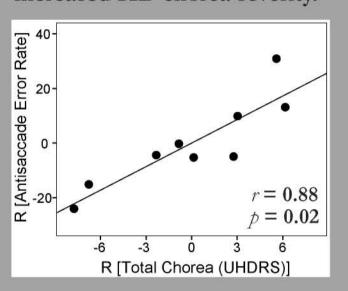
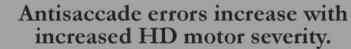


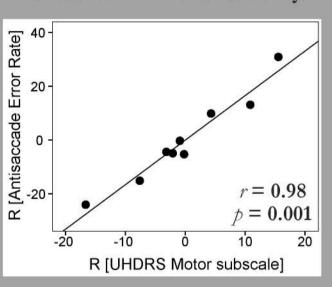
Table 3 - HD Results

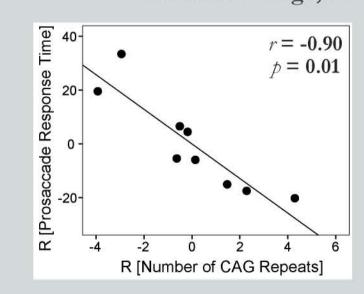

		AII HD N=9			
Prosaccade		mean (sd)	range		
Error Rate (%)	vertical	8.0 (8.5)	0-23.8		
	horizontal	1.9 (4.3)	0-12.5		
	total	5.0 (3.9)	0-11.9		
Latency (ms)	vertical	328 (70)	218-411		
	horizontal	289 (63)	197-391		
	total	308 (61)	207-374		
Antisaccade					
Error Rate	vertical	49.2 (35.1)	8.3-85.7		
	horizontal	54.5 (37.3)	4.2-91.7		
	total	52.0 (36.1)	6.4-88.9		
Latency	vertical	493 (137)	263-700		
	horizontal	395 (138)	229-644		
	total	457 (119)	247-591		

D. Correlations Between Clinical Assessments & Eye Tracking


Controlled for Age, CAG Repeats and Medication State


R [variable] = residual variable values after partial correlation


Prosaccade response times tend to increase with increased HD chorea severity.


Antisaccade errors increase with increased HD chorea severity.

Controlled for Age, UHDRS Motor Score and Medication State

Prosaccade response times decrease with increased HD CAG repeats.

E. Summary & Conclusions

- Infrared eye tracking is a quick, non-invasive, and objective method of characterizing disease severity in HD.
- Our results show that with increasing clinical severity, HD patients show a slowing in the initiation of reflexive eye movements and dysfunction of executive control (increased antisaccade errors).
- Controlling for Age, UHDRS Motor Score, and Medication State, there was a strong negative correlation between number of CAG repeats and reflexive prosaccade response time, suggesting eye movement measures may be a sensitive biomarker in HD.
- Thus, eye tracking has the potential to evaluate disease progression and treatment effects.