P769 Effects of Natalizumab on Relapses and MRI Outcomes in Hispanic Patients with Relapsing Multiple Sclerosis

European Committee for Treatment and Research in **Multiple Sclerosis**

September 9-12, 2009 **Düsseldorf, Germany**

J Herbert, V Rivera, C Ford, A Pace, R Hyde

¹New York University Hospital for Joint Diseases, New York, NY; ²Maxine Mesinger MS Clinic, Baylor College of Medicine, Houston, TX; ³University of New Mexico Health Sciences Center, Albuquerque, NM; ⁴Biogen Idec, Cambridge, MA

BACKGROUND

- In the pivotal AFFIRM and SENTINEL clinical studies, natalizumab (TYSABRI®) was effective both as a monotherapy and in combination with interferon beta (IFNβ)-1a in patients with relapsing multiple sclerosis (MS)
- In AFFIRM, natalizumab monotherapy significantly reduced annualized relapse rate (ARR) by 68% (P < .001) and the risk of sustained disability progression by 42%-54% (P < .001) over 2 years compared with placebo¹
- In SENTINEL, natalizumab added to IFNβ-1a significantly reduced ARR by 55% (P < .001) and the risk of sustained disability progression by 24% over 2 years compared with placebo added to IFNβ-1a²
- In recent subgroup analyses of data from AFFIRM and SENTINEL, natalizumab demonstrated efficacy in patients of African descent that was comparable to its efficacy in the overall study populations³
- The effects of MS therapies in Hispanic patients have not been well studied
- We retrospectively analyzed the effects of natalizumab treatment on relapse rates, disability, and magnetic resonance imaging (MRI) outcomes in Hispanic patients who participated in AFFIRM and SENTINEL

OBJECTIVE

 To evaluate the efficacy of natalizumab in Hispanic patients with relapsing MS who participated in the AFFIRM or SENTINEL studies

METHODS

Patients

- Inclusion criteria for AFFIRM and SENTINEL have been published previously^{1,2}
- Patients included in this analysis indicated "Hispanic" as their ethnic origin at screening

Study Design

- AFFIRM and SENTINEL were randomized, double-blind, placebocontrolled, phase 3 clinical studies
- In AFFIRM, patients received natalizumab 300 mg or placebo (2:1) by intravenous (IV) infusion once every 4 weeks for up to 116 weeks
- In SENTINEL, patients received natalizumab 300 mg IV or placebo once every 4 weeks added to intramuscular (IM) IFNβ-1a 30 μg once weekly (1:1) for up to 116 weeks
- Relapses were defined as new or recurrent neurologic symptoms not associated with fever or infection that lasted ≥ 24 hours and were accompanied by new neurologic signs found by the examining neurologist
- Progression of disability was defined as an increase of ≥ 1.0 point in the Expanded Disability Status Scale (EDSS) score from a baseline score of at least 1.0 or an increase of \geq 1.5 points in the EDSS score from a baseline score of 0 (progression could not be confirmed during a relapse)
- Contiguous, 3-mm-thick axial slices through whole brain were acquired. MRI analysis was performed by experienced raters unaware of treatment assignment

Analyses

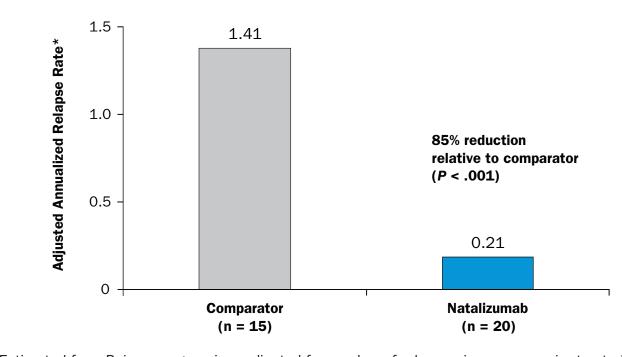
- Post-hoc analyses were performed on Hispanic patients who participated in AFFIRM and SENTINEL
- Data from comparator (placebo in AFFIRM and placebo + IFNβ-1a in SENTINEL) groups were combined, and data from the natalizumab monotherapy group in AFFIRM were combined with data from the natalizumab + IFNβ-1a group in SENTINEL

RESULTS

Patients

- A total of 35 patients who participated in AFFIRM (n = 13) and SENTINEL (n = 22) identified themselves as Hispanic
- Overall, 20 patients received natalizumab and 15 received
- Demographic and baseline disease characteristics for Hispanic patients in AFFIRM and SENTINEL are shown in Table 1
- The majority of patients (83%) were female, and the mean patient age was 34.5 years
- Patients in the natalizumab group showed a trend toward more gadolinium-enhancing (Gd+) lesions (3.35 \pm 5.75) than patients in the comparator group (1.27 \pm 2.34), but this difference was not statistically significant
- Important baseline factors were included in the statistical models for assessing treatment effects; hence all inferences were adjusted for any baseline imbalances

TABLE 1. Demographic and Baseline Disease Characteristics of Hispanic **Patients in AFFIRM and SENTINEL**

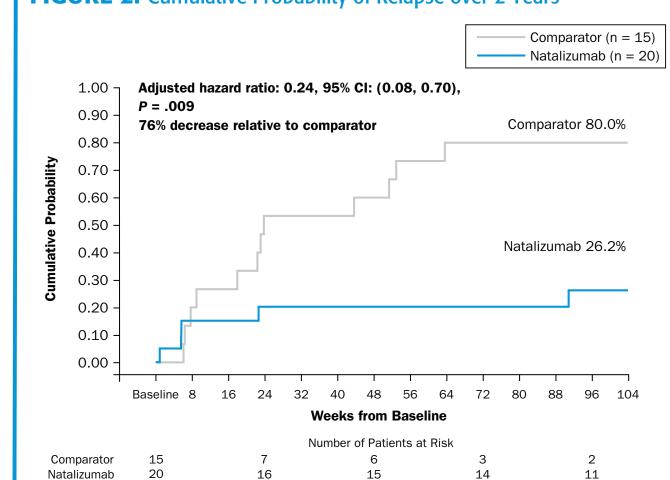

	Comparator (n = 15)	Natalizumab (n = 20)	P Value
Age, years, mean ± SD	34.7 ± 5.3	34.3 ± 8.7	.886
Female, n (%)	12 (80)	17 (85)	1.000
EDSS score, mean ± SD	2.67 ± 1.35	2.23 ± 1.09	.292
No. of relapses in prior year, mean ± SD	1.67 ± 0.82	1.75 ± 1.55	.839
Median duration of disease, years	8.0	6.0	.402
No. of Gd+ lesions, mean ± SD	1.27 ± 2.34	3.35 ± 5.75	.138
≥ 9 T2 lesions, n (%)	15 (100)	17 (85)	.244
Median T2 lesion volume, mm ³	3868.4	3965.3	.777
Median T1 hypointense lesion volume, mm ³	414.9	683.7	.677
BPF, mean ± SD	0.825 ± 0.014 (n = 15)	0.823 ± 0.016 (n = 19)	.719

BPF = brain parenchymal fraction; EDSS = Expanded Disability Status Scale; Gd+ = gadoliniumenhancing; SD = standard deviation.

Effect of Natalizumab on Relapses

- In Hispanic patients, natalizumab significantly reduced ARR over 2 years, relative to comparator (Figure 1)
- After adjusting for baseline characteristics, ARR was 85% lower in the natalizumab group than in the comparator group
- Natalizumab significantly reduced the risk of relapse over 2 years by 76% relative to comparator (hazard ratio [HR] = 0.24; 95% confidence interval [CI]: 0.08, 0.70; P = .009) (Figure 2)
- The 2-year cumulative probability of relapse was 26.2% for patients treated with natalizumab and 80.0% for patients who received comparator

FIGURE 1. Annualized Relapse Rate over 2 Years



*Estimated from Poisson regression, adjusted for number of relapses in one year prior to study entry, baseline EDSS score (≤ 3.5 vs > 3.5), presence of Gd+ lesions at baseline, and age in years (< 40 vs \ge 40).

Effect of Natalizumab on Disability Progression

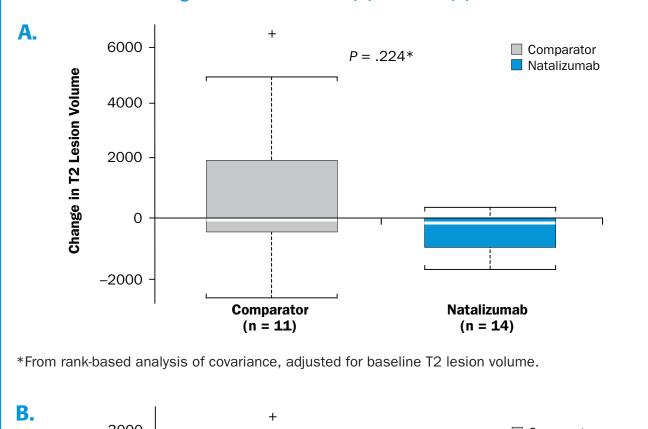
- Natalizumab reduced the risk of disability progression sustained for 12 and 24 weeks by 69% and 86% over 2 years relative to comparator. However, this effect did not reach statistical significance
- At 2 years, the cumulative probability of disability progression sustained for 12 weeks was 16.9% in the natalizumab group and 51.3% in the comparator group (HR = 0.31; 95% CI: 0.08, 1.24; P = .098)
- At 2 years, the cumulative probability of disability progression sustained for 24 weeks was 5.0% in the natalizumab group and 38.7% in the comparator group (HR = 0.14; 95% CI: 0.02, 1.26; P = .080)

FIGURE 2. Cumulative Probability of Relapse over 2 Years

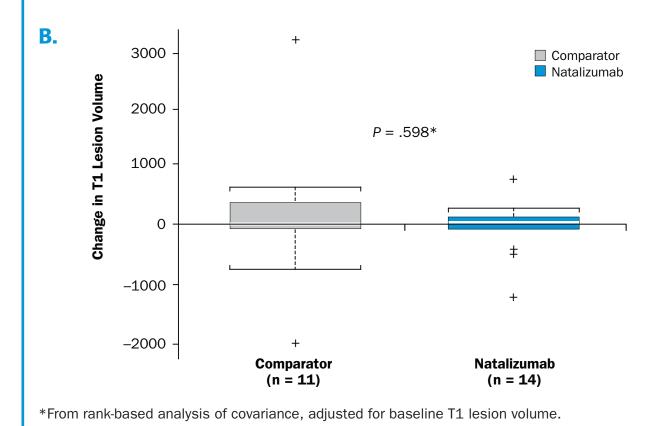
Effect of Natalizumab on MRI Outcomes

- In Hispanic patients, natalizumab significantly reduced the mean number of Gd+ lesions by 100% at 2 years relative to comparator (P = .021, from rank-based analysis of covariance [ANCOVA],adjusted for presence of Gd+ lesions at baseline) (Table 2)
- Natalizumab significantly reduced the mean number of new or enlarging T2 lesions by 95% over 2 years relative to comparator (P = .013, from rank-based ANCOVA, adjusted for baseline numberof T2 lesions [$< 9 \text{ vs} \ge 9$]) (Table 2)

- During the second year of study, other differences in MRI outcomes emerged between treatment groups. However, the differences over 2 years did not reach statistical significance (Table 2)
- From year 1 to year 2, the mean number of new T1 lesions was significantly lower in the natalizumab-treated group than in the comparator group (0.36 \pm 1.08 vs 2.73 \pm 4.96, respectively; P = .012)
- From year 1 to year 2, mean percentage change in brain parenchymal fraction (BPF) was significantly lower in the natalizumab-treated group than in the comparator group $(-0.078 \pm 0.704 \text{ vs } -0.668 \pm 0.604, \text{ respectively; } P = .021)$
- Changes in volume of T1 lesions and T2 lesions over 2 years by treatment group are shown in Figure 3


TABLE 2. MRI Outcomes at Year 2

^bFrom rank-based ANOVA.


	Comparator (n = 11)	Natalizumab (n = 14)	P Value
No. of Gd+ lesions, mean ± SD	1.55 ± 3.62	0.00 ± 0.00	.021ª
No. of new or enlarged T2 lesions, mean \pm SD	11.64 ± 17.53	0.57 ± 1.65	.013ª
No. of all new T1 lesions, mean \pm SD	5.73 ± 9.85	2.00 ± 2.00	.339 ^b
Percentage change in BPF from baseline, mean \pm SD	-1.16 ± 0.72 (n = 10)	-0.68 ± 0.78 (n = 15)	.072ª
^a From rank-based ANCOVA adjusted for baselin	e values		

	(n = 11)	(n = 14)	P Value	
No. of Gd+ lesions, mean ± SD	1.55 ± 3.62	0.00 ± 0.00	.021ª	
No. of new or enlarged T2 lesions, mean \pm SD	11.64 ± 17.53	0.57 ± 1.65	.013ª	
No. of all new T1 lesions, mean \pm SD	5.73 ± 9.85	2.00 ± 2.00	.339 ^b	
Percentage change in BPF from baseline, mean ± SD	-1.16 ± 0.72 (n = 10)	-0.68 ± 0.78 (n = 15)	.072ª	
^a From rank-based ANCOVA, adjusted for baseline values.				

FIGURE 3. Change in Volume of T2 (A) and T1 (B) Lesions over 2 Years

CONCLUSIONS

- Hispanic patients with relapsing MS treated with natalizumab in AFFIRM and SENTINEL experienced significant reductions in relapses and MRI lesion activity relative to patients who received comparator
- The efficacy of natalizumab on relapses and MRI lesions in Hispanic patients was similar to its efficacy in the overall study populations of AFFIRM and SENTINEL^{1,2}
- The finding that natalizumab reduced the proportion of patients experiencing sustained progression of disability over 2 years is consistent with the relapse outcome. Although statistical significance was not reached, patient numbers were small
- These findings, along with those of other subgroup analyses,³ confirm the efficacy of natalizumab is maintained across ethnic subgroups

References

- 1. Polman CH, O'Connor PW, Havrdova E, et al. N Engl J Med. 2006;354:899-910. 2. Rudick RA, Stuart WH, Calabresi PA, et al. N Engl J Med. 2006;354:911-923.
- 3. Cree B, Stuart W, Tornatore C, et al. Poster presented at: 61st Annual Meeting of AAN; April 25-May 2, 2009; Seattle, WA. P06.143.

Disclosures

Author disclosures

Studies supported by Biogen Idec and Elan Pharmaceuticals, Inc.